

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Fall 2016
Lab 11 – Tuples and Dictionaries

Assignment: Lab 11 – Tuples and Dictionaries
Due Date: During discussion, November 14th through 17th
Value: 10 points

Part 1: Dictionaries
A very useful data type built into Python is the dictionary. Dictionaries are
sometimes found in other languages as “associative memories” or “associative
arrays.” Dictionaries are data structures that map a key to a value. So, in the
example below, we have a dictionary that maps the key ‘a’ to the value

‘alpha’; the key ‘o’ to the value ‘omega’; and the key ‘g’ to the value ‘gamma’.

(example from https://developers.google.com/edu/python/dict-files)

We can create this dictionary with this line of code:

greek = {'a': 'alpha', 'o': 'omega', 'g': 'gamma'}

Dictionaries may look a lot like lists, but there are a few key differences:

1. A dictionary uses curly braces instead of square brackets
2. A dictionary is made up of (key, value) pairs
3. The key and value are separated by a colon (:)

4. The (key, value) pairs are separated by a comma (,)

5. The keys must be unique (just like the indexes of a list are unique)

Lists are indexed by order, which we see as a range of numbers. Dictionaries
are indexed by association, or their key values. Keys can be any immutable
type, and every key in a dictionary must be unique. Strings, floats, and
integers are common choices for a key.

https://developers.google.com/edu/python/dict-files

CMSC 201 – Computer Science I for Majors Page 2

Part 2: Dictionary Functions

We can start by looking at how we could create a simple dictionary. Let’s
create a new dictionary called animals.

animals = {"Clifford" : "dog", "Hedwig" : "owl",

 "George" : "monkey", "Kha" : "snake",

 "Laika" : "dog"}

In this dictionary, we have mapped famous animals, using their name as the
key, and their species as the value. Since there may be multiple animals of the
same species (e.g., Clifford and Laika are both dogs), it makes sense to use
the unique value (the name) as the key.

Using a dictionary, we can perform a number of operations. The examples
below use the animals dictionary defined above.

A. Iterate through the dictionary:

for name in animals:

 print(name, "is a famous", animals[name])

OUTPUT:

Laika is a famous dog

George is a famous monkey

Clifford is a famous dog

Kha is a famous snake

Hedwig is a famous owl

B. Access a specific entry:

print("Kha is the", animals["Kha"], \

 "from 'The Jungle Book'")

OUTPUT:

Kha is the snake from 'The Jungle Book'

C. Add something to the dictionary:

animals["Punxsutawney Phil"] = "groundhog"

CMSC 201 – Computer Science I for Majors Page 3

D. Updating the value of something in the dictionary:
animals["Hedwig"] = "snowy owl"

E. Deleting something from the dictionary:

Laika was a Soviet space dog, the first

animal to orbit the Earth; she did not

survive more than a few hours in space :(

del animals["Laika"]

F. Checking if a key is present in the dictionary:

"Laika" in animals

this will return False, as Laika's no longer in

the dictionary

"Clifford" in animals

this will return True

G. Dictionaries also have methods that enable some additional functionality.

In addition to the commands and examples above, here are some of the
more helpful methods we can use.

All of these return a “view” by default, so we must cast them to a list to
use them.

a. list(animals.items())

i. Returns a list of animals's (key, value) tuple pairs
[('Punxsutawney Phil', 'groundhog'),

 ('Hedwig', 'snowy owl'), ('George', 'monkey'),

 ('Clifford', 'dog'), ('Kha', 'snake')]

b. list(animals.values())

i. Returns a list of dictionary animals's values
['groundhog', 'snowy owl', 'monkey', 'dog',

 'snake']

c. list(animals.keys())

i. Returns a list of dictionary animals's keys
['Punxsutawney Phil', 'Hedwig', 'George',

 'Clifford', 'Kha']

CMSC 201 – Computer Science I for Majors Page 4

Part 3: State Capitals

After logging into GL, navigate to the Labs folder inside your 201 folder.

Create a folder there called lab11, and go inside the newly created lab11

directory.

linux2[1]% cd 201

linux2[2]% cd Labs

linux2[3]% pwd

/afs/umbc.edu/users/k/k/k38/home/201/Labs

linux2[4]% mkdir lab11

linux2[5]% cd lab11

linux2[6]% pwd

/afs/umbc.edu/users/k/k/k38/home/201/Labs/lab11

linux2[7]% █

Once you’re in the folder, you will need to copy the starter file from my public
directory. Type (all on one line – don’t forget the rest of the command!):
cp /afs/umbc.edu/users/k/k/k38/pub/cs201/given_capitals.py

capitals.py

To open the file for editing, type
 emacs capitals.py

and hit enter.

The first thing you should do in your file is complete the comment header
block, filling in your name, section number, email, and the date.

Then you can start completing the code, following the comments in the file and
the instructions on the following page.

CMSC 201 – Computer Science I for Majors Page 5

For Lab 11, you will be implementing an application that can tell the user the
capital of any state. First things first, download the file containing the states
and their capitals by running this command inside your lab11 folder:
cp /afs/umbc.edu/users/k/k/k38/pub/cs201/stateCaps.txt .

The file contains the states and their respective capitals.

In order to complete your lab, you will need to implement a program that does
the following tasks:

1. Read in the stateCaps.txt file (you can hardcode the filename).

(HINT: You will need to take a look at how the file is formatted to be able
to extract the parts you need!)

2. Write a function to store the data from the file in a dictionary, where the

state names are the key, and the capital is the value. (HINT: Your
function should return the dictionary. The split() function should

prove useful in getting the data out of the file.)

3. Ask the user to input a state – check if the word appears in the
dictionary’s keys. (HINT: Use the in keyword discussed earlier.)

a. If the word doesn’t appear in the dictionary, tell the user that.
b. If the word does appear in the dictionary, return the translation.

4. Allow the user to keep looking up state capitals as long as they like; if

they type “exit”, the program should finish.

5. If the user types “list” it lists each of the state names (HINT: Use the

keys() method to list the keys.)

You can find a sample run of the program on the next page.

CMSC 201 – Computer Science I for Majors Page 6

Here is a sample run of the program, with the user input in blue. Note that your
“list” will likely not be in the same order, since the dictionary values will be in a
different order.

bash-4.1$ python capitals.py

Welcome to the State Capital Lookup System

 Please enter the state you want the capital of.

 (Use 'list' for choices, or 'exit' to quit): list

Your choices of states are:

Oregon

West Virginia

Iowa

Hawaii

Utah

Colorado

Rhode Island

Connecticut

Alaska

[etc etc -- your program should print out all 50 states]

 Please enter the state you want the capital of.

 (Use 'list' for choices, or 'exit' to quit): mayrland

Sorry, mayrland is not a state.

 Please enter the state you want the capital of.

 (Use 'list' for choices, or 'exit' to quit): Maryland

The capital of Maryland is Annapolis

 Please enter the state you want the capital of.

 (Use 'list' for choices, or 'exit' to quit): Minnesota

The capital of Minnesota is Saint Paul

 Please enter the state you want the capital of.

 (Use 'list' for choices, or 'exit' to quit): EXIT

Sorry, EXIT is not a state.

 Please enter the state you want the capital of.

 (Use 'list' for choices, or 'exit' to quit): exit

Thank you for using the State Capital Lookup System!

CMSC 201 – Computer Science I for Majors Page 7

Part 4: Completing Your Lab

To test your program, first enable Python 3, then run capitals.py. Try

asking it to show the capitals of different states than the ones shown in the
sample run above.

Since this is an in-person lab, you do not need to use the submit command to

complete your lab. Instead, raise your hand to let your TA know that you are
finished.

They will come over and check your work – they may ask you to run your
program for them, and they may also want to see your code. Once they’ve
checked your work, they’ll give you a score for the lab, and you are free to
leave.

IMPORTANT: If you leave the lab without the TA checking
your work, you will receive a zero for this week’s lab. Make
sure you have been given a grade before you leave!

